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Introduction

Breast cancer is a heterogeneous disease, consisting of at least five intrinsic
subtypes including the luminal A and luminal B (estrogen receptor alpha positive;
ESR+), Her2+ (v-erb-b2 erythroblastic leukemia viral oncogene homolog 2 positive),
basal (ESR-, Her2-), and normal-like patient groups!-3. These subtypes exhibit
distinct differences in their molecular signaling cascades, stress responses, and in
the types of cells present within the tumor. For example, the luminal subtypes of
breast cancer display a strong estrogen-signaling component, while the Her2+
subtype reflects the downstream response of receptor tyrosine kinase activation.
Although such subtype-related pathways and responses are known to be
biologically and clinically relevant, they represent only a fraction of total cellular
pathways and responses. A more complete understanding is needed to fully
determine the reasons for treatment failure and disease recurrence. To date,
however, we lack a comprehensive analysis of those processes within the tumor that
are associated with outcome (or other histopathological/clinical variables), and
whether they are dependent or independent of the tumor subtype.

Our central hypotheses are that each subtype can be defined as a collection of
molecular processes, that there exist processes that can be used to predict patient
outcome regardless of subtype, and that there exist a disjoint set of processes that
predict prognosis within each subtype. Moreover, we argue that the identity of these
processes can be inferred through the combined use of our de novo bioinformatics
tool entitled Breast Signature Analysis Tool (BreSAT) and our catalogue of
transcriptional signatures (entitled BreSAT-DB) that have been collected from
literature and resources such as GeneSigDB# and MSigDB>, but carefully modified
and augmented to reflect the specific biologies of the breast environment. We have
applied BreSAT and it’s associated catalogue BreSAT-DB to thousands of breast
tumor samples and models of the disease. This has allowed us to identify novel
pathways, processes, responses, and cell types that are of interest to disease
progression and outcome, in addition to the identification of highly correlated
processes that share little or no biological commonalities. These processes of
interest were largely recapitulated in the models investigated thus far, although we
identify various elements with relevance to the human disease that are currently
lacking in the models. These discoveries are leading to a more comprehensive and
complete view of breast cancer and the generation of more accurate disease models.



Body

Task 1. Complete course requirements (year 1):
1a. BIOC 603: Genomics and Gene Expression (year 1).

All required PhD coursework was successfully completed in year 1. Other program
requirements to date, including research seminars 1 & 2 (junior seminar and PhD
proposal respectively) were also successfully completed.

Task 2. Development of breast cancer-specific signatures (year 1):

2a. Acquire signatures from literature and databases (year 1).

2b. Filter collection based on relevancy (year 1).

2c. Agglomerate signatures representing high biological similarity (year 1).
2d. Refine genes according to behavior in breast-related datasets (year 1).
Milestone #1 Publication (year 1).

A major component of our framework involves the collection and formatting of
molecular signatures, along with the development of an appropriate ontological
annotation. We have termed this highly curated signature database Breast Signature
Analysis Tool Database (BreSAT-DB). Signatures are typically a set of genes that
have been determined to be differentially perturbed in response to either a specific
molecular event (e.g. overexpression of ESR), or are markers of a specific cell type
(e.g. macrophages versus pericytes versus endothelial cells). Signature databases
such as GeneSigDB# and MSigDB?> exist, and contain thousands of such signatures.
However, these signatures have been generated in a variety of organisms, tissues,
cell types, and with different techniques. Thus, many of these signatures may not
accurately recapitulate the target biology in human clinical breast samples.
Furthermore, in some cases, multiple signatures exist for what are meant to be the
same biological processes. This creates challenges downstream in the analysis, as
separate signatures that represent the same general process or cell type may
contain a dissimilar set of genes, which exhibit different expression patterns in
human breast cancer data, and ultimately lead to contradictory conclusions. For
these reasons, we have refined and annotated thousands of available signatures
with features such as the species and tissue they were generated in, as well as their
general category (e.g. whether they are used to define a particular cell type,
biological response, or a broad prognostic response). Within each of these
categories, the signatures are further sub-classified as appropriate (e.g. signatures
that define biological responses are sub-classified into one of ten hallmarks of
cancer®). Our categorizations are intended to allow for the first broad attempt at
comprehensively dissecting breast tumors into a set of individual cellular and
mechanistic components, and may be further refined and expanded by the
community over time. BreSAT-DB now contains approximately 6400 signatures,
which have been formatted for direct computational analysis and individually
curated according to features of interest with respect to breast cancer.



In addition, we have generated a data compendium now containing over 9000
human patient samples related to breast cancer, along with their associated
histopathological/clinical data. Our compendium has been stratified by stages of
disease progression (e.g. normal tissue, DCIS, IDC, metastases, etc.), type of sample
(e.g. whole tumor versus cell-specific tissue derived by laser capture
microdissection), adjuvant and neoadjuvant treatments, and type of data (e.g. gene
expression microarrays, aCGH, miRNA, etc.). While our focus has been on human
data, we also have a sizable compendium of models for the disease, including
murine tumors and human cell lines. The collection involves a rigorous process of
normalization and harmonization. Clinical parameters must be carefully matched to
determine, for example, whether recurrence is measured as a local or distant event
that takes place in a common 5- or 10-year time frame. This ensures that clinical
information is directly comparable from one dataset to the next, and allows us to
develop automated tools for analyzing the data.

The collection and annotation of our database and compendium has been relatively
straightforward, albeit a time consuming process. Year 2 oversaw minor updates to
the size of the database (approximately 400 new signatures added), and further
refinement of all signature annotations. In addition, our data compendium has
expanded to include thousands of additional samples, and we are now in the process
of collecting data from other platforms, including next generation sequencing.
Unfortunately, recent publications involving signature collection and analysis by
other groups’- required that we re-evaluate, re-write, and expand aspects of our
manuscript in order to differentiate ourselves and highlight the unique advantages
BreSAT-DB provides for breast cancer research. This includes detailed
demonstration that signatures developed in the breast are more informative than
equivalent signatures developed in other tissue types, when applied to breast
cancer datasets. Furthermore, breast-derived signatures contain genes that tend to
be more highly correlated with one-another, suggesting that BreSAT-DB is more
accurate and approximate than general-purpose signature databases for use in
breast cancer research. An updated manuscript detailing the production,
composition, and utility of our databases is now written and undergoing final
modifications for submission.

Task 3. Refinement of statistical methodology (year 1):

3a. Statistic for cohesiveness of subtypes (year 1).

3b. Statistic for association with survival/recurrence (year 1).
3c. Statistic for stability of sample ordering (year 1).

Given a panel of gene expression profiles derived from breast tumor samples, we
typically have some information regarding patient clinical attributes including
tumor grade, stage, ESR status, Her2 status, lymph node status, and ultimately
patient outcome with respect to disease recurrence and overall survival. The
canonical example of a question that is asked of such datasets is to identify



molecular processes and/or cell types in the tumor that differ between patients of
good and poor outcome. It is important to note that the assumption here is that
tumors be broadly divided into these two groups before the analysis can be
performed. Various bioinformatics tools like GSEA>10 exist for this type of analysis.
However, the heterogeneity of breast cancer suggests that a simple a priori partition
of the patients into classes such as good and bad outcome may not suffice. This is
highlighted by the enormous differences that exist between subtypes, and the
supposition that tumors of different subtypes recur for separate reasons. Indeed,
previous attempts at identifying prognostic predictors of breast cancer outcome
have largely been confounded by the subtypes, only having utility in a subset of
patients!l. Our observations suggest that the heterogeneity of breast cancers does
not allow such a simple dichotomy, and it is nearly impossible to define 2 or more
such classes a priori. Moreover, existing tools such as GSEA have a limitation in that
they assume that a process is significantly differentially modulated between the
bipartition of the patients. That is, these tools look for sets of genes with high
expression in one category but low expression in the other. We argue that it is more
natural for samples to display a range of activation levels for a given signature. This
is a biological reality that is accepted within the community, but often ignored by
bioinformatics methodologies. For example, it is common for Her2 to be genomically
amplified one or more times in breast tumor cells, and its gene expression and
membrane protein levels increase continuously in accordance. This increase has
been directly linked to a corresponding change in signaling downstream of the
receptor!?. Staining of Her2 by immunohistochemistry (IHC) reveals a continuous
range of intensities, which are scored from 0-3+ for simplicity, and often further
reduced to simply Her2- or Her2+. While tumors are often summarized by a simple
discretization, it is more natural for human breast tumors to display a range in
signal activation levels or in the amount of various cell types present; bioinformatics
methodologies should reflect this reality.

To overcome this problem, we have designed an intuitive approach that linearly
orders tumors over individual signatures (Figure 1), thus measuring the strength of
the particular response or cell type within the transcriptional profile of a tumor.
Furthermore, in contrast to other traditional methodologies, our approach does not
require a priori that tumors be binned into distinct classes. As such, the tool allows
us to investigate continuous trends across the data, assessing the relative activation
of signatures across a panel of patients. Using statistical approaches we have
additionally developed, such orderings can be measured for robustness and other
assessments of quality.

Since thousands of signatures are being employed, and each one generates a unique
patient ordering, we have further developed statistical tests to identify those
signatures from this large set that display ‘interesting’ behavior. The definition of
‘interesting’ is largely dependent on the particular question being asked of the
patient dataset. For example, given a transcriptional signature of ESR activation
(that is, the gene set corresponding to transcripts that are differentially expressed
when ESR is over-expressed), patients are ordered according to their increasing



relative expression of the signature. We may then ask whether the patient order is
consistent with other assays for assessing the degree of ESR activity, including for
instance IHC staining of the ESR protein (Figure 1). Alternatively, a signature may
order patients in such a way that associations can be made with a variety of other
histopathological/clinical parameters, such as tumor subtype or patient outcome.
The development of statistics to identify such associations is not trivial. For
example, in determining an association with patient outcome, the tumor ranks could
be treated as a continuous variable under Cox regression, essentially asking
whether an increase in patient rank linearly corresponds to a change in patient
outcome. Alternatively, the patients on either end of the ordering may share good
prognosis, with the patients in the center of the ordering having poor outcome. Both
scenarios present relevant information about how a process or cell type relates to
patient prognosis, but they require different means of analysis. There are benefits
and drawbacks to the various approaches, and ultimately, any biological conclusions
depend on such choices.

We have successfully developed a variety of statistics that are able to determine
associations between the patient ordering and discrete clinical variables (such as
ESR status or tumor subtype), continuous variables (such as age), as well as patient
outcome. In addition, we have developed statistics that measure the stability of a
patient ordering generated by a particular signature, when compared against the
stability generated by a random set of genes. This allows us to filter out those
signatures that are less trustworthy in the data.

The type of statistic described thus far treats each signature independently.
However, a natural question arises as to whether dependencies exist between the
patient orderings generated by each signature. There may be technical reasons for
dependencies between signatures (e.g. they have many genes in common), or there
may be some underlying biological reason. For such a set of signatures that order
patients in a similar way, we wish to investigate whether they also tend to share
associations with histological/clinical parameters and/or functional ontologies. To
investigate this, we begin by calculating the correlation between every pair of
patient orderings, and use this information to build a graph network with edges
placed between nodes (signatures) that have a high correlation (figure 2). Highly
interconnected regions of the graph are investigated for overrepresentations in
associations with available histological/clinical parameters. This is not simply a
technical investigation, but one with biological and clinical worth. The fact that
processes are correlated tells us about how tumor cells respond to stress, and hints
at the molecular level regulatory interactions that take place in tumor progression.
This in turn suggests better stratification of patients for the development and
success of new treatment targets. Thus, such a signature-network approach
identifies functionally-related signatures, even when the signatures represent
different biological processes that share little or no genes in common.

Task 4. Application of framework to datasets (year 1-3):



4a. Apply signatures to human tumor datasets (year 1-2).
Milestone #2 Publication (year 2).

Our linear ordering procedure has been repeated for signatures within our
catalogue BreSAT-DB, across a compendium of ~200 ductal carcinoma in situ and
~2000 invasive breast carcinomas, for which clinically annotated whole tumor gene
expression data was available. Appropriate tests were used to identify statistically
significant associations between the patient ordering generated by each signature,
and histopathological/clinical variables including intrinsic subtype, ESR status, Her2
status, lymph node status, grade, recurrence, and overall survival. An interesting
early finding was that the large majority of signatures have a significant association
with certain clinical variables, such as ESR status and the tumor subtype. In fact,
even random sets of genes tended to produce significant associations. This is a
testament to the enormous transcriptional perturbations that occur downstream of
specific molecular events, including activation of ESR. To compensate for this trend,
the significance of an association with a given molecular signature is adjusted by
resampling 10,000 random gene sets of the same size.

After adjustment, there remained a large number of signatures consistently having
significant associations with the variables tested, and there was a surprising overlap
in the signatures that associate with any given variable. (figure 2,3). Thus far, we
have identified 239 signatures that consistently had a significant association with
molecular subtype in at least half of the datasets investigated (adjusted pvalue <=
0.05). Typically this association was the result of Luminal A and Basal tumors
having vastly different patient ranks. In addition, 207 signatures were found to
consistently have significant associations with ER status, 23 with lymph node status,
125 with disease recurrence, and 116 with overall survival (161 combined total for
patient outcome). As expected, signatures designed to predict patient outcome in
breast cancer patients were all highly significant in the majority of datasets.
Remarkably, however, we have been able to identify signatures with consistent,
significant associations to patient outcome, but having no such associations to any of
the other variables tested. These are signatures that encompass a variety of
processes, such a response to hypoxia, VEGF signaling, or activation of the
complement immune system. Because such signatures operate independently of
known histopathological/clinical parameters, they represent a unique class with
prognostic value across all subtypes, which contrasts the types of predictors that are
in clinical usell. This is an important milestone, because it identifies molecular
markers that are determinants of outcome in breast cancer, but have remained
unrecognized to date. The identification of such elements is essential for the
development of new classes of treatments. Furthermore, our methodology
represents a fundamentally different way of characterizing breast tumors. Whereas
traditional approaches segment patients into classes according to the expression of
a small number of genes, BreSAT comprehensively identifies the entire set of
pathways, processes, responses, and cell types that define the disease. This
exhaustive cataloguing of the molecular differences between subtypes is providing a



more refined understanding, clinically and molecularly, of the underlying biology of
the disease.

As there is some indication that breast tumors of each intrinsic subtype represent
distinct biological entities, our analysis was further extended to observe how
signatures associate with histopathological/clinical variables within each individual
subtype. BreSAT was applied in isolation to patient sets belonging to each of the five
intrinsic subtypes, and statistical associations were determined as before.
Interestingly, these results revealed that each subtype tends to favor its own set of
signatures (and by extension, processes) that associate with patient outcome. The
luminal A subtype contained the largest number of signatures that were associated
with patient outcome (recurrence and/or overall survival), most of which ordered
patients in a manner that was independent of ER status, LN status, and grade. In
contrast, tumors belonging to the luminal B subtype had only 7 signatures
consistently associated with patient outcome in at last half of the datasets tested.
Surprisingly, 5 of these 7 were signatures derived to specifically predict outcome in
breast cancer patient. This suggests that patients with luminal B tumors are
especially good candidates for therapeutic decision-making through genomic
predictors. Tumors within the ERBB2 and Basal subtypes also had a small number
of associations between signatures and patient outcome (8 and 2 respectively),
possibly due to the smaller sample size of these subtypes. These associations related
to processes such as TGF-Beta and p21 in the ERBB2 subtype, and CK1 and mRNA
processing in the Basal subtype. The disparities in the results are perhaps not
surprising, as the patients with tumors belonging to different subtypes tend to
receive different treatments for their disease. However, our results are particularly
applicable as indicators of how and why current treatments fail in different subsets
of breast cancer patients.

Such results support our hypotheses that breast tumors can be described by the
activation/repression of various molecular signatures, which can act in parallel or
orthogonally to a tumor’s intrinsic subtype, and are a consequence of the complex
mix of cell types within the tumor. To better understand the contribution of
different cell types to breast tumor biology and disease outcome, we next applied
BreSAT to a dataset containing microdissected epithelium and stroma tissue from
matched breast tumors (figure 4). As before, statistical tests were used to identify
associations between signatures and histopathological/clinical variables of interest.
Because the process was performed in matching tumor epithelium and stroma, we
were able to distinguish between signatures that are macroenvironmental (present
in all compartments of the tumor) vs those that are microenvironmental (present
either in epithelium or stroma, but not both). Furthermore, our results have
revealed that some subsets of patients display remarkably similar signature
activation/repression in matched tumor epithelium and stroma, whereas other
patient subsets are enriched in microenvironment-specific responses.

We are additionally investigating the types of dependencies that exist between
signatures. By quantifying the correlation between all possible pairs of signature-
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derived patient orders, we identify functional associations between signatures, even
when the signatures represent vastly different biological processes that share little
or no genes in common. Our analysis indicates that although there is an
overrepresentation of highly correlated signatures with a significant number of
genes in common, there additionally exist many correlated signature pairs with no
overlap. We identify many such distinct types of processes and cell types that
appear to be highly correlated to one-another, and are currently examining ways of
subdividing our collection of signatures into a core set of groups. The fact that many
processes are co-modulated suggests methods for building more robust and
accurate prognostic signatures, that encompass a broader range of clinically-
relevant characteristics with highly resilient signals.

Task 5. Hypothesis-driven generation of model systems (year 2-3):
5a. Selection of appropriate cell lines and mouse models (year 3).
5b. Molecular engineering of models (year 3).

5c. Analysis of modification success (year 3).

Milestone #3 Publication (year 3).

Several hundred samples of various mouse models and cell lines of the disease have
been collected and formatted into our compendium. Our linear ordering procedure
has been repeated for all ~6400 signatures within our catalogue BreSAT-DB, thus
identifying which models have repression or activation of processes of interest. Not
surprisingly, the cell lines are largely reflective of primary breast tumors in terms of
the patterns of signature activation. For example, ESR positive cell lines tend to
display activation of various endocrine-related signatures, while ESR negative cell
lines tend to display activation of signatures related to MAPK-induced proliferation.
Nonetheless, cell lines differ from human tumors in the activation of various
signatures. For example, ESR positive human tumors display activation of various
signatures related to cellular adhesion and interaction with the cellular
microenvironment, while ESR positive cell lines do not. This may be explained by
differences in the physical environment of the two sample types. As changes in the
breast microenvironment has been shown to have an effect on disease outcome, this
points to a major component that is lacking with 2-dimensional serum-based cell
line models.

Initial comparisons between human breast tumors and mouse models of the disease
indicate similar trends; while individual models tend to share molecular
components with particular human subtypes, the similarities are imperfect. For
example, over all ~6400 gene sets in BreSAT-DB, the MMTV-Neu model has an
activation pattern that is highly correlated with human luminal A tumors (Figure 5).
Both MMTV-Neu murine tumors and human luminal A tumors present relatively
high levels of signatures representing E2F3 silencing and cell cycle arrest. However,
luminal A tumors consistently demonstrate high activation of signatures relating to
ESR and other endocrine pathways; a property that is not shared by MMTV-Neu
mouse tumors. This is not surprising, given that human luminal A tumors tend to be
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ESR positive, while MMTV-Neu tumors are not. Furthermore, MMTV-Neu murine
tumors display activation of various immune components that are not shared by
human luminal A tumors (Figure 6). Together, this implies where the MMTV-Neu
murine model could be used to test hypotheses and treatments within the human
luminal A subtype, and equally of value, when it should not be used.

Work during year 3 of project will continue to comprehensively map out the
similarities and differences between human breast tumors and models of the
disease. This systematic understanding will lead to the modification and generation
more accurate and appropriate breast cancer models.
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Key Research Accomplishments

* Construction of a comprehensive and highly annotated signature database,
specific to breast cancer (BreSAT-DB). This database currently holds ~6400
gene sets, a large proportion of which were developed in breast-related
tissue.

* Collection and formatting of over 9000 data samples relating to breast
cancer, primarily gene expression profiles of invasive ductal carcinoma
(BreSAT-Compendium).

* The generation of various visual and statistical methodologies to apply
signatures to the collected datasets, and to determine the significance of
associations between pathways, processes, responses, or cell types, and
available histopathological/clinical parameters.

* Application of our signatures to human datasets, testing for statistical
associations and dependencies between signatures.

* Application of our signatures to murine and cell line models of breast cancer,

using the developed statistical tests to determine which signatures are highly
and consistently activated in individual models.

13



Reportable Outcomes

Poster

Title: Breast Signature Analysis Tool (BreSAT): a framework for investigating the
molecular networks of breast cancer

Conference: Era of Hope

Location: Orlando, Florida

Date: August 2011

Symposium Presentation

Title: Breast Signature Analysis Tool (BreSAT): a framework for investigating the
molecular networks of breast cancer

Conference: Era of Hope

Location: Orlando, Florida

Date: August 2011

Workshop Presentation

Title: Breast Signature Analysis Tool (BreSAT): a framework for investigating the
molecular networks of breast cancer

Conference: 10t Annual McGill Workshop on Bioinformatics in Barbados: Systems
Approaches in Translational Breast Cancer Research

Location: Holetown, Barbados

Date: January 2011

Poster

Title: Breast Signature Analysis Tool (BreSAT): a framework for investigating the
molecular networks of breast cancer

Conference: RECOMB Computational Cancer Biology 2010

Location: Oslo, Norway

Date: June 2010

Collection and normalization of breast related data (BreSAT-Compendium)

In total, our compendium now includes over 9000 human patient samples with
associated histopathological/clinical data. Our compendium has been stratified by
stages of disease progression (e.g. normal tissue, DCIS, IDC, metastases, etc.), type of
sample (e.g. whole tumor versus cell-specific tissue derived by laser capture
microdissection), adjuvant and neoadjuvant treatments, and type of data (e.g. gene
expression microarrays, aCGH, miRNA, etc.). We are additionally in the process of
collecting and formatting thousands of next generation sequencing profiles for use.
The collection involves a rigorous process of normalization and harmonization.
Clinical parameters must be carefully matched to determine, for example, whether
recurrence is measured as a local or distant event that takes place in a common 5- or
10-year time frame. This ensures that clinical information is directly comparable
from one dataset to the next, and allows us to develop automated tools for analyzing
the data. While our focus has been on human data, we also have hundreds of high-
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throughput samples representing models for the disease, including murine tumors
and human cell lines.

Construction of signature database (BreSAT-DB)

Collection, refinement, and annotation of ~6400 available molecular signatures with
features such as the species and tissue they were generated in, as well as their
general category (e.g. whether they are used to define a particular cell type,
biological response, or a broad prognostic response). Within each of these
categories, the signatures are further sub-classified as appropriate (e.g. signatures
that define biological responses are sub-classified into one of ten hallmarks of
cancer®). While we have collected numerous available gene sets from public
databases, we have additionally focused on obtaining signatures from the literature
that were specifically generated in breast-related tissues. This ensures that our
signature database, BreSAT-DB, comprehensively and accurately reflects those
pathways, processes, responses, and cell types that are relevant to breast cancer.

Generation of a programming package in R for data analysis (BreSAT)

We have developed numerous computational methodologies to load breast-related
high-throughput data, to filter and visualize signatures of interest in the data, and
statistics to quantify the relevance of such applications. These functions have been
coded in the R programming language with a flexible design that allows them to be
used by other researchers with various data types. The code has been formatted as
an R package to be released for free through bioconductor.
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Conclusion

The framework we have described is a novel and important step towards better
understanding the underlying pathways, processes, responses, and cell types that
influence breast cancer progression and outcome. Our data compendiums represent
the largest effort we are aware of to collect high-throughput breast-related data in
an appropriately formatted and clinically annotated fashion. Similarly, our signature
collection BreSAT-DB, contains the largest signature collection known to us, is
thoroughly annotated, and crucially, is highly specific to breast cancer. Work will
continue on the projects/manuscripts currently in preparation; we aim to release
our framework to the community in the near future.

Our analysis with the BreSAT framework has allowed us to piece together the
interplay between individual molecular signatures, and to better understand how
this interplay affects the phenotype of breast cancer. Our methodology introduces a
unique and intuitive semi-supervised approach to pathway analysis, and is robust
when multiple disparate high-throughput datasets are used. Crucially, it represents
an entirely different way of classifying the disease. Instead of relying on the ‘loudest’
molecular signals that make up the majority of a transcriptional profile, the status of
subtle but important biological pathways are taken into account. BreSAT provides a
means to comprehensively determine the classes of responses that characterize
patient outcome, regardless of the confounding effect of the tumor subtype.

Our analysis of primary human tumors has identified numerous processes that
influence disease progression and outcome. In a similar manner, we have applied
our methodology to cell line and mouse models of the disease. This has allowed us
to determine which models best reflect individual aspects and/or subgroups of the
human disease, and in specifically what ways. Furthermore, we have identified
important aspects of human breast cancer that are lacking or inconsistent in
available models of the disease. Together, this work provides an essential step
forward in understanding the molecular components that are involved in breast
cancer.
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Supporting Data
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Figure 1. ESR activation signature in a breast cancer dataset. (A) Heatmap of ESR activation signature, with rows
representing genes, and columns representing tumors. Gene expression is colored from green (low) to red (high).
Samples are ordered from left (least ESR signaling activation) to right (most ESR signaling activation) using BreSAT.
Arrow indicates increasing signature activation in the tumors. Patients are labeled according to their ESR IHC status
(blue=positive), and their intrinsic subtype. (B) Patients ranks of the ESR- and ESR+ classes are displayed as
boxplots, and are significantly different (p-value=1.6x10-31). (C) Patient ranks of the intrinsic subtypes are displayed
as boxplots, and are significantly different (p-value=2.0x10-39). (D) Tumors were broadly divided in half according to
their ranks, and Kaplan-Meier curve shows tumor recurrence of the two groups. The tumors with less ESR signaling
activation have significantly worse outcome (p-value=2.8x10-3). Expression data was obtained from [13]; ESR
activation signature was obtained from [14].
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Figure 2. Network view of correlations between signature orderings. Nodes represent each signature tested,
and are joined by edges representing the highest positive 1% and negative 1% of median correlations between
signature ordering pairs across datasets. Nodes are colored according to the proportion of datasets where they have
significant associations with ESR status (A), subtype (B), recurrence (C), and the overlap (D).
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Figure 3. Venn diagram representing significant clinical associations. Signatures must be significantly
associated (adjusted p-value<0.05) with ESR status, Her2 status, intrinsic subtype, and/or disease recurrence, in at
least 50% of datasets tested. 21 signatures were found to be uniquely associated with recurrence.
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Figure 4. Natural Killer cell-mediated cytotoxicity activation signature in stromal and epithelial breast
tissue. (A) Heatmap showing laser capture microdissected stromal tissue ordered from left (representing less
activation of the signature) to right (representing greater activation of the signature). Samples are labeled according
to their intrinsic stromal subtype: ER high (light blue), fibroblast-enriched (green), hypoxic (red), immune-enriched
(purple), matrix remodeling (yellow), and mixed (dark blue). (B) Heatmap showing laser capture microdissected
epithelial tissue from the same tumors as in A, and labeled according to their intrinsic stromal subtype. Boxplots of
the patient rank distributions for immune-enriched (purple) and all other samples (gray) in stromal tissue (C) and
epithelial tissue (D). Immune-enriched stromal tissue shows significantly greater activation of the signature (p-
vlaue=8.99x10), while the epithelial tissue does not (p-value=0.560). Expression data was obtained from [15]; the
signature was obtained from [16].
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Figure 5. Cross-species hierarchical clustering over ~6400 gene sets. The relative tumor ranks were determined
separately for samples in each dataset [17-18], and these ranks are used as features in the rows. The MMTV-Neu
mouse model clustered closely with human luminal A tumors (highlighted with blue rectangle). Heatmap is colored
from blue to red, representing least to greatest activation of each individual signature respectively.
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Figure 6. Comparison of relative activation of signatures between human luminal A and murine MMTV-Neu
tumors. (A) Both human luminal A and mouse MMTV-Neu display high activation of genes downstream of E2F3. (B)
Luminal A tumors display high activation of genes representing response to endocrine signaling, while the mouse
tumors do not. (C) MMTV-Neu tumors demonstrate a high transcriptional response associated with interferon
activation, while the human tumors do not. Datasets are from [13,18], while signatures were obtained from [19-21].
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